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In this note we consider Chebyshev subspaces (i.e., those that contain a unique
nearest element to every point) of real V = V[O, 1]. The result we prove is a
characterization of those subspaces which are Chebyshev with linear metric
projections (nearest point maps). We also give an example of a Chebyshev sub
space whose metric projection is not linear.

There is a paucity of results in our setting. It is known that no subspace
of V of finite dimension (see Article IV of [1]) or finite codimension [6] is
Chebyshev. In fact, as far as we know, the only Chebyshev subspaces of V
known prior to our work were the simple ones constructed as follows.
Let A ~ fO, 1) be measurable with positive measure less than one and let
M ~ {IE £1:f vanishes off A}. Then M is Chebyshev with linear metric
projection.

On the other hand, there is much known in some related situations. For
complex scalars Kahane (3] and others (see [3] for references) have nice
results. The situation in which [0, 1] is replaced by a measure space with
atoms has also been studied with some success (see [2, 5, 7]).

We mention some terminology. The symbol A denotes Lebesgue measure
on [0, 1J. For I in V, denote by Z(J) the set {t: jet) ~ O}. Then Z(J) is
defined only to within a sct of measure °and set operations involving Z(f)
should be interpreted modulo sets of measure 0.

LEMMA. Let F ~ V be countable. There exists g E V = sp F such that
Z(g) = n{Z(J):/EF}.

Proof Let g be a smooth point of the unit ball of V (Mazur's Theorem (4,
Satz 2) assures the existence of g). Certainly, Z(g)"JZ = n{Z(f):/EF}.
Suppose A(Z(g)\Z) > O. Choose IE F such that I does not vanish a.e. on
Z( g)\Z. Choose hE L'" such that [I h II ~ 1, JhidA =F 0, and h is supported
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on Z( g)\Z. Let cp E V* be the support functional for g and extend cp to a
functional of norm 1 on D, represented by ho E LCO. We may assume that he
vanishes on Z( g). But now ho and ho + h are two support functionals for g
which are distinct on V (since they differ on f). This contradiction completes
the proof.

THEOREM. Let M be a proper subspace of D. Then M is Chebyshev with
linear metric projection if and only if M has the following form. There exists
a measurable set A k [0, 1] with °< A(A) < 1 and a linear operator
T: D(A) ~ D(B) (B = [0, l]\A), with II Tfll < Ilfll for all nonzero f in
D(A), such that

M = {fED:fln = T(fIA)}'

Proof Suppose that M has the indicated form. For g E D define Pg
to be the element of M which agrees with g on A. Then P is obviously a linear
projection onto M. Now let mE M with m =1= Pg. Then

II g - Pg II = li( gin) - T( g IA)II <; lie gin) - (m In)11

+ II(m In) - T( g IA)II < lie gin) - (m In)/I + II(m IA) - (g IA)II

=lIg-mll.

Thus M is Chebyshev with metric projection P.
Now suppose M is a Chebyshev subspace with linear metric projection P.

Let MO = P-l(O). Observe that if g E MO, Z( g) is a uniqueness set for M,
i.e., m EM and m = °a.e. on Z( g) imply that m = 0. To see this, let hE MJ.
be such that II h II = 1 and h( g) = II g II. Then I h I = 1 a.e. on [0, l]\Z( g).
Thus every point at which I h(!)1 < II h II is in Z(m). But the existence of non
zero hE MJ. and mE M satisfying this condition implies that M is not
Chebyshev, by Lemma 1 of [7].

Let r = inf{A(Z(f)):fE MO}. By the lemma, there exists go E MO such that
A(Z( go)) = r. Let A = Z( go). We see that 0 < A(A) = r < 1. We claim
that

MO = {g E D: g = 0 on A}.

To prove this, let g E MO and suppose g does not vanish on A. By the lemma
there exists a linear combination gl of g and go such that Z( gl) = A () Z( g)
is a proper subset of A. Thus A(Z( gl)) < r, which is impossible. Thus g
vanishes on A.

Now suppose g E V and g vanishes on A. Write g = Pg + gl' where
gl E MO. Since g and gl vanish on A, so does Pg. But A is a uniqueness set
for M and therefore Pg = O. Thus g = gl E MO.

Now let B = [0, 1]\A and define T: V(A) ~ D(B) as follows. For f in
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D(A), extendftofEV by definingj(t) = 0 for all t E B. Let Tf = p(J)ls.
Then T is linear since P is. Observe also that p(J) - JE MO and so P(J)
agrees withfon A. Thus we have that if 0 =1= f E £l(A) thenJ ¢ MO and so

II Tfll = IIJ - P(J)II < Ilfll =

Now letm E M and definef = m IA . ThenJ - mEMo and so m = PI. Thus
T(m IA) = (Pf)ls = m lB' Conversely, suppose g EV is such that g Is =
T(g IA)' Define f = g IA . Then, as above, Pf agrees with f and thus g on A.
Finally Pf, by definition of T, agrees with T(J) and thus g on B. Thus
g = Pf E M. This completes the proof.

We remark that if M is a subspace of the form described in the theorem
then its metric projection can be described in terms of T as follows. For any
fE V, Pfis the function which agrees withf on A and T(f!A) on B.

EXA..Jl,iPLE. Let

M = {fE V:f(t + t) = j(t + !) = jet), V tE [0, m.

We will show that M is Chebyshev with non-linear metric projection.
Observe that the subspace spanned by (1, l, 1) is Chebyshev in 11(3). Let
f E £l. For each t E [0, i), there is a unique h(t) E~ which minimizes

j jet) - h(t)! + j j(t + !) - h(t)I + If(t + !) - h(t)j.

We will show that h is an integrable function. Once this is done, it is easy
to see that the element of M which extends h is the unique best approxi
mation to f in M.

To show that h is measurable, note that h is a composition of measurable
functions as follows:

h: t ~ (f(t),j(t + i),j(t + m~ P[(f(t),j(t + i),f(t + i»~] -+ h(t),

where P is the metric projection onto the span of (1, 1, 1) in 11(3).
To show that h is integrable, note that, for t E [0, i).

\ h(t)I < I h(t) - f(t)! + \j(t)1 < !h(t) - f(t)\ + j h(t) - f(t + i)!
+ I h(t) - j(t + i)! + I f(t) I <2If(!)\ + IfCt + !)I + \f(t + i)!.

The right-hand side is integrable and so h. is.
Finally, we show that the metric projection onto M is not linear. Let

fl and f2 be the characteristic functions of [O,!) and [i, i), respectively.
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Bothh and); clearly have 0 as best approximation in M. Let h be the con
stant i. Then hEM and

11/1 +h - h 11 = i < i = 11ft +h II.

Hencefi +/2 does not have 0 as best approximation.
We have now established that M has the desired properties.
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